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Comparison of MHD stability results obtained for helically symmetric equilibria with two 
codes, HERA and BETA, showed excellent agreement in growth rates and marginal stability 
parameters. While HERA is the helical version of the ERATO linearized 2D stability code. 
BETA obtains nonlinear 3D equilibria and their (nonlinear) stability properties. The cases 
studied comprise internal, i.e., fixed plasma boundary, resonant and nonresonant modes in 
low-shear equilibria with intermediate and small p values. 

1. INTRODUCTION 

The assessment of the MHD stability properties [ 1 ] of stellarator [2] equilibria is a 
challenging 3D computational task [3-51. Although a significant amount of results 
[4, 6-81 was obtained for truly toroidal stellarators, here understood as ideal MHD 
equilibria with vanishing net toroidal current on each magnetic surface, independent 
tests of such results are as desirable as they are hard to come by [9]. Helically 
symmetric equilibria provide the possibility of rather relevant tests since they can be 
chosen net-current-free so that purely pressure-driven ideal MHD modes can be 
studied. The HERA code, which investigates the linearized 2D stability problem with 
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the help of an eigenvalue analysis based on the Ritz-Galerkin method, recently 
became operational [lo]. The BETA nonlinear energy-minimizing 3D code [4,8 1 can 
of course be applied to the case of helical symmetry, so that quantitative comparisons 
can be obtained. 
In the following two classes of helically symmetric equilibria with straight magnetic 
axes are analyzed with respect to the stability of selected modes. The equilibrium 
sequences are defined in Section 2, and stability results are presented in Section 3. 

2. Two CLASSES OF EQUILIBRIA 

We describe two classes of helically symmetric I = 2 equilibria as obtained with 
BETA and the HASE quasianalytical 2D equilibrium code [ 111. 

2.1. Class 1. Here, we consider f = 2 equilibria with fixed rotational transform on 
axis r0 = 0.0275 per field period, corresponding to a half-axis ratio of the elliptical 
cross section near the axis e = 1.404307, and fixed aspect ratio A of the field period 

(A = Lp/2q,lasma ) of A = 1.7. For the shape of the flux surfaces see Fig. 1. The 
parameter which is varied in class 1 is p, 

0.05 < l/l) < 0.15, 

where the average p value is defined by 

(8)=2jpdVjj:[Bzd3r (V=j:\:l~d’r) 
I 

Nearly parabolic (in distance from the axis) pressure profiles are used; see Table I. In 
HASE, the condition of vanishing net longitudinal current on each surface is satisfied 
by adjusting the arbitrarily prescribable profiles. The half-axis ratio of the elliptical 

F1c.1. One field period of the equilibria of class I as obtained with HASE. Aspect ratio A = 1.7. 
rotational transform per field period on axis l,, = 0.0275. 
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TABLE I 

Co> PO PI A2 

0.1529 1.74825 -2.86 0.157 

0.1272 1.46475 -1.98 0.170 

0.1018 1.18125 -1.262 0.162 

Note. p. and p1 are the constants in the pressure profile p’ = 
-p. fp, T used in HASE; A, is the ellipticity of the contour of the 
boundary in BETA; A, = (eb - l)/(e, + 1). r0 = 0.0275 per field 
period (e, = 1.404307) for all equilibria of class 1. 

contours of the plasma boundary varies slightly with /I and is used as input for 
BETA; see Table I. BETA, when solving for vanishing net longitudinal current, then 
obtains, in the limit zero mesh size, the same r-profiles. 

2.2. Class 2. Here, we consider I= 2 equilibria with fixed /?, @) = 0.03, approx- 
imately parabolic pressure profile, and A = 1.5 1. The parameter which varies in class 
2 is 1: 

0.06 < z, < 0.12. 

The basic sequence was obtained with BETA by varying A,; see Table II. An 
equivalent sequence was obtained with HASE by appropriate choices of e 
(corresponding to zO) and the fourth-order fourth-harmonic shape parameter S,, (for 

TABLE II 

Parameters of the Equilibria of Class 2 as Obtained with BETA 

0.385 0.116 0.1358 0.58 0.679 

0.355 0.1004 0.118 0.502 0.590 

0.340 0.093 0.1094 0.465 0.547 

0.325 0.0856 0.1008 0.428 0.504 

0.295 0.072 0.0842 0.36 0.421 

Note. rr, and re are the rotational transforms at the centre and the 
edge, respectively. Cp) = 0.03 and A = 1.51 for all equilibria of 
class 2. 
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TABLE III 

Parameters of the Equilibria of Class 2 as Obtained with HASE 

2.08433 0.55 0.166 0.3315 0.066 0.649 0.3753 

2.00000 0.50 0.15 0.3240 0.050 0.590 0.3552 

1.88169 0.428 0.127 0.3166 0.026 0.504 0.3255 

1.836412 0.400 0.118 0.3133 0.017 0.471 0.3134 

1.79621 0.375 0.110 0.3103 0.009 0.441 0.3025 

Nofe. e is the half-axis ratio of the elliptical cross section at the centre. and S,, is a fourth-order 
shape parameter [ I1 1. 

details of notation see [ II]) ( corresponding to I~), which resulted, consistently, in 
purely elliptical plasma boundaries; see Table III. For the rotational transform 
profiles see Fig. 2; for the shape of the flux surfaces see Fig. 3. 

3. STABILITY RESULTS 

The equilibria of class 1 were analyzed with respect to the nonresonant lixed- 
boundary m = 1, n = 0 mode, while the nearly resonant fixed-boundary m = 2, n = 1 
mode was investigated in a topological torus consisting of five periods of the 
equilibria of class 2. Here, 2m and 2n are the poloidal and toroidal node numbers, 
respectively. 

FIG. 2. Rotational transform profiles for the equilibria of class 2. 
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FIG 3. One field period of an equilibrium of class 2 as obtained with HASE. Aspect ratio A = 1.51 
and ~,=O.ll. 

In helical symmetry, modes can be characterized by their longitudinal wavenumber 
k and their poloidal node number 2~2, so that a Fourier decomposition obtains which 
is exact with respect to z and approximate with respect to [, where [ = rp - hz (r, cp, z 
are cylindrical coordinates and 2x/h is the helical period), 

Characterizing modes in a topological torus of N helical periods (2N field periods in 
the cases considered here) by their poloidal and toroidal node numbers 

where u and u are toroidal and poloidal parameters. respectively, we find 

k/h = n/N + m, 

which defines the k-value, which, in HERA, is characteristic of a mode with given m 
and n. 

In BETA, 6W is obtained by a secondary minimization [8] (subsequent to the 
minimization leading to equilibrium), in which the eigenfunction is constrained to lie 
on a hyperplane normal to a given test displacement defined by Jr,,, 6z, perturbing 
the magnetic axis and 6R, 6~ perturbing the plama region; for details of notation see 
[8]. For the low-shear equilibria considered here, a test displacement which models 
the expected mode in a simple way is sufficient. The normalized test displacements 
are 

6r, = 1, 

6z, = 0, 

&=s”2(1 -s)cosu, 

6~ = - +( 1 - 3s) sin 24 

581/52/l-13 



FIG. 4. The fixed-boundary m = I, n = 0 mode occurring in equilibria of class I. 

FIG. 5. Normalized eigenvalues (extrapolated to zero mesh size) of the m = I. n = 0 mode occurring 
in class 1 as obtained with BETA (-6W/Ilrl12) and HERA (-y2/w:). The norm ilrll is defined by 
11511~ = fjjj @/B~)!~wvs - mu)* d%, p=p. w4 is an Alfven frequency defined by W: = 

B’/4~PW &smar where the density p is assumed to be proportional to the pressure p uz p. 
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for the m = 1, n = 0 mode and 

dr, = dz, = 0, 

6R = 2~“~( 1 - s) cos(2u - z’), 

dty = -( 1 - 2s) sin(2u - 0) 

for the m = 2, n = 1 mode. Here B = Vs x VW, with s the toroidal flux which scales 
like radius squared. 

3.1. Results for the m = 1, n = 0 mode. The structure of the m = 1, n = 0 mode is 
shown in Fig. 4. Normalized eigenvalues as obtained with HERA are shown in Fig. 5 
and indicate a marginally stable point with respect to the m = 1, n = 0 mode of 

(p),, = 10.5%. 

Normalized eigenvalues as obtained with BETA are also shown in Fig. 5 and indicate 
a marginal point 

(p),, = 10.7%. 

FIG. 6. Extrapolation in HERA to zero mesh size of the eigenvalue of the m = 1, n = 0 mode 
occurring in class 1. The number of intervals in the coarsest grid is given by NW/N1 = 24/24. 
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FIG. 7. Extrapolation in BETA to zero mesh size of the eigenvalues of the m = I. ,I = 0 modes 
occurring in class I. The number of intervals in the coarsest grid is given by NS/NU/NY = 6:12/12. 

Also to be noted are the close coincidence of the normalized eigenvalues, which are 
typically 10-‘oA, corresponding to growth times of 10psec in a fusion plasma 
(B = 5 T, n = 10” m-3, plasma radius 1 m). 

Since the instability is treated two-dimensionally in HERA and three-dimensionally 
in BETA, the behaviour of the eigenvalues with extrapolation to zero mesh size is 
characteristically different. While for the simple mode considered here, the 
extrapolation in HERA is insignificant (see Fig. 6), extrapolation to zero mesh size is 
essential in BETA (see Fig. 7): even for (j3) = 15% the unstable behaviour does not 
actually occur for numbers of mesh points given by NS/NiJ/NV = 10/20/20. In this 
particularly simple case actually negative values of SW would have been obtained by 
further mesh refinement, which, however, is not necessary for obtaining reliable eigen- 
values. 

3.2. Results for the m = 2, n = 1 mode. The structure of the unstable m = 2, 
n = I mode occurring in the topological torus of five periods of the class 2 equilibria 
is shown in Fig. 8. Normalized eigenvalues as obtained with HERA are shown in 
Fig. 9 and indicate as marginal points of the instability window in rotational 
transform the values 

lo = 0.37 and lo = 0.58. 



FIG. 8. The fixed-boundary tn = 2, n = 1 mode occurring in class 2. 

? 
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FIG. 9. Normalized extrapolated eigenvalues of the m = 2, n = I mode occurring in class 2 as 
obtained with BETA and HERA. The grids used in BETA for the extrapolation are given by 6/ 12/60 < 
NS/NU/NV< 12,l24/120. 
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The equivalent results obtained with BETA are also shown in Fig. 9. and the 
marginal points are 

l,, = 0.36 and z. = 0.575. 

Again, also the eigenvalue curves are essentially equal. Taking into account the shear. 
we may consider 1, = 0.42 (see Table II) instead of the above value I,, = 0.36 as the 
smaller marginal point and find that the distance in r from the resonant value 1 = 0.5 
has to be about 0.08 for both lower and higher values than the resonant one to avoid 
the instability. Of course, AI will depend on /I. which here is @tR) = 0.03. and 
toroidicity, which here vanishes. 

4. CONCLUDING REMARKS 

Comparison of ideal MHD eigenvalues and marginal points in (j?) and lo with 
respect to the stability of selected modes as obtained from BETA and HERA shows 
good agreement for the cases considered here. The ease with which these examples 
are resolved by BETA may serve as an indication of the reliability of this 3D code as 
applied to truly toroidal cases [6-81. On the other hand, it is well known that the 
structure of unstable modes is much more complicated than encountered here in 
equilibria with significant shear [ 121, so that for these cases the secondary 
minimization starting from a test function is must less straightforward. Again, 
significant tests and hence increase in reliability may be obtained by studying helical 
equilibria with strong shear [ 13 ] in future comparative work. 
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